- Stop Guessing: When Different Models Agree on the Same Stop Level
Comparing Random Forest and Gradient Boosting stop models using MAE-to-date and recovery probability.
- Two Sides of Risk: Using MAE and MFE to Govern Stops
- Building a Machine-Learned Trailing Stop Engine
A practitioner’s journal on engineering systematic exits using Machine Learning.
- Building Machine B: From Research Model to Production System
Turning a trailing stop model into a live risk engine with retraining, safeguards, and fallback rules.
- Why Machine-Learning Trailing Stops Rarely Work (and How to Fix Them)
Backtest evidence from an ES/MES two-machine architecture: ML trailing stops often add zero alpha. Here’s why—and how to redesign exit research.
- RTH vs ETH: The Data Distribution Mismatch That Broke My Stop Model
Why training on overnight futures data sabotaged a model I only use during RTH.
- The Futures Rollover Trap: Why Your ML Model Breaks Every Quarter
Futures contracts roll. Your model quietly degrades unless you engineer around it.
- Random Forests for Trailing Stops: Labels Without Lookahead Bias
How I defined 'good' and 'bad' trailing stop decisions without cheating with future data.
- Why Trailing Stops Are Harder Than Entries
Entries get the attention. Exits shape the equity curve.
- I Had Rules for Entries and Feelings for Exits
Why trailing stops became the core problem I decided to systematize.
- When the Second Brain Hesitates: RFStopManager, Stale State, and a Stop That Didn’t Move
A real failure-mode walkthrough where Machine B published tighter trailing stops, yet RFStopManager didn’t record applying them—why apply_status became SKIP/not_tightening, and how to harden the loop.
- Fragility and Failure Modes: Where the Second Brain Can Break
A candid map of the weaknesses in my distributed trading architecture—and the roadmap for hardening it.
- The Operational Loop: Supervising a Second Brain in Real Time
What 'good state' looks like during a trading session, how I monitor a distributed trading system, and how I avoid the two classic failure modes of automation.
- A Live Trade Through the Second Brain: From Signal to Exit
A real short trade traced through my multi-machine trading system—showing how models, databases, and execution logic coordinate in real time.
- The System Behind the Second Brain: Machines, Models, and a Database as the Nerve Center
A high-level tour of the components in my trading system—two Linux machines, two Windows machines, and a database that turns separate tools into a coordinated decision pipeline.
- Trading With a Second Brain: How ChatGPT Changed My Decision Process
My trading bottleneck wasn’t information—it was unstructured thinking under pressure.
- Random Forest Trailing Stops: From Training to Live Stop Decisions
How my trailing-stop engine uses a Random Forest as a risk gate to choose the tightest valid stop for current conditions.